| Ise Newton's second law to solve for force, mass, and acceleration. Give the nd show all work. | Date: | |--|---| | 1 What not Complete the state of o | | | =? | r has a mass of 3,000 kg? | | $n = 3000 \text{ kg}$ $= 2 \text{ m/s}^2$ | | | | | | 2. A $\underline{10 \text{ kg}}$ bowling ball would require $\underline{\text{what force}}$ to accelerate down an alleys = ? | way at a rate of 3 m/s ² ? | | $= 10 \text{ kg}$ $= 3 \text{ m/s}^2$ | | | | | | 3. Sally has a car that accelerates at 5 m/s². If the car has a mass of 1000 kg, produce? | how much force does the car | | <u>-</u> | | | | | | | | | 4. What is the mass of a falling rock if it produces a force of 147 N? | | | | | | | | | 그 스타스 얼씬 왜 [인간] 참보다. | | | 5. What is the mass of a truck if it produces a force of 14,000 N while accele | erating at a rate of 5 m/s ² ? | | | | | | Date: | |---------|--| | 6.
= | | | | | | 7. | Your own car has a mass of 2000 kg. If your car produces a force of 5000 N, how fast will it accelerate? | | | | | | | | 8. | Sally challenges you to a race. On the first turn you run off the course and your car strikes a large bale of hat Your car still produces 5000 N of force, but now it accelerates at only 2 m/s ² . What is the mass of your car now that the bale of hay is stuck to it? | | | | | | | | | | | 9. | Even though she is way ahead of you, Sally switches her car to run on nitrous oxide fuel. The nitrous oxide allows her car to develop 10,000 N of force. What is Sally's acceleration if her car has a mass of 500 kg? | | | and the control of th | | | | | Phys | S 3 rd Law Worksheet 2 Name Peri | od | |----------------|---|------------------------| | circl | the best answer for each question from the choices below. Be clear about which answ-none of this trying to circle 2 answers and be sloppy so I'll just count it correct @ A why you have chosen the answer you chose. Good Luck!!! | er you are
and then | | a.
b | ton's 3 rd Law states
Objects in motion stay in motion and objects at rest stay at rest
orce is equal to mass times acceleration
or each action there is an equal and opposite reaction | | | Why | | - 1 | | a
b | rcher shoots an arrow. The action force is the bowstring against the arrow, The reactio
ir resistance against the bow
rrow's push against the bowstring
rip of the archer's hand on the bow | n force is | | Why | | | | reac
a
b | ayer catches a ball. The action force is the impact of the ball against the player's glove
in force is
the force the glove exerts on the ball
the player's grip on the glove
the friction of the ground on the player's shoes | . The | | Why | ? | | | forc
a
b | ayer hits a ball with a bat. The action force is the impact of the bat against the ball. Th
i
he grip of the player's hands on the ball
he air resistance on the ball
The force of the ball against the bat | e reaction | | Why | ? | | | of
a
b | aseball player bats a ball with a force of 1,000 N. The ball exerts a reaction force again
less than 1,000 N.
More than 1,000 N.
000 N. | nst the bat | | Why | ? | | | Eart
a | erson is attracted toward the center of the Earth by a 500 N gravitational force. The fost attracted toward the person is 100 N | rce that the | | Wh | Much more than 500 N | | ## Chapter 5 Newton's Third Law of Motion Action and Reaction Pairs In the example below, the action-reaction pair is shown by the arrows (vectors), and the action-reaction described in words. In (a) through (g) draw the other arrow (vector) and state the reaction to the given action. Then make up your own example in (h). | Example: | | mg0-06 | |----------------------------|---|-----------------------| | Fist hits wall. | Head bumps ball. | Windshield hits bug. | | Wall hits fist. | (a) | (b) | | Bat hits ball. | Hand touches nose. | Hand pulls on flower. | | (c) | (d) | (e) | | WO TO | | | | Athlete pushes bar upward. | Compressed air pushes
balloon surface outward. | (h) | | (f) | (g) | |